国产精品丝袜无码不卡一区-特黄做受又硬又粗又大视频小说-日本大尺度吃奶呻吟视频-奇米影视7777狠狠狠狠色-亚洲中文有码字幕日本

     
  中文版 English
 
Hot news:
  News
  Company news
  Industry News
  Current news
Hot Product
IPX1 IPX2 Drip Waterproof Test...
UL1439 Sharp Edge Tester
BND-TPK05 IEC 60529 Test Probe...
IEC62368 test probe kit BND-TP...
IEC 61032 Standard Test Probe ...
IEC60320 EN60320 Appliances co...
UL 498 Standard Plugs and Rece...
IPX1 to IPX4 Drip rain test an...
Vertical horizontal vibration ...
IP5X IP6X Sand and dust proof ...
climate constant temperature a...
IPX1 to IPX9 waterproof testin...
 
 
Industry News
Home  -  News  -  Industry News
Understanding the Functionality and Procedures of High and Low Temperature Test Chambers
From: BONAD  Date: 2024-11-07 17:57:44

High and low temperature test chambers are crucial devices used for performing reliability tests on industrial products. These chambers simulate extreme temperature environments to evaluate the performance of various products, including electronic devices, automotive parts, aerospace components, and marine weaponry.

Working Principle of High and Low Temperature Test Chambers

The operation of high and low temperature test chambers is primarily based on precise temperature control and regulation. Let's explore the high-temperature control first. Heating is essential to achieve high temperatures within the chamber, which is relatively straightforward. Typically, these chambers use far-infrared nickel-chromium alloy high-speed heating wires for this purpose. The temperature control system employs a PID+SSR system to ensure accurate and efficient energy usage.

For low-temperature operations, increasing the number of heating wires and enhancing the performance of the temperature control software are necessary for rapid heating and achieving high temperatures. Additionally, the refrigeration system is critical for attaining low temperatures. The refrigeration system usually consists of a fully enclosed compressor unit from a French manufacturer, utilizing fluorine refrigerants for cooling. Its operation is based on the reversed Carnot cycle, where the refrigerant is compressed to a higher pressure through the compressor and then exchanges heat with the surrounding medium via the condenser to achieve cooling.

In summary, high and low temperature test chambers transition between extreme temperatures through a synergistic action of temperature balance and control systems. During continuous operation, the control system uses PID automatic calculation to adjust heater output, achieving dynamic balance and ensuring stable chamber operation.

225L Constant Temperature and humidity Test chamber

Standard Operating Procedures for High and Low Temperature Test Chambers

1. Power Connection: Connect the power source and switch on the power switch, typically located on the side panel of the control cabinet.

2. Standby Check: Allow the chamber to run for at least 60 seconds and check for any phase sequence alarms.

3. Cooling Water System: Activate the cooling water pump's power switch and open both inlet and outlet valves for cooling water. Ensure that the drain valve is closed before opening. Monitor water pressure gauge readings at both inlet and outlet, ensuring pressure between 0.2~0.6Mpa with a pressure difference greater than 0.2Mpa. Also, ensure water temperature does not exceed 28℃.

4. Humidification Device Setup: If humidity operation is needed, turn on the humidification device's power switch and open the water pipe valve.

5. Setting Test Parameters: Set required temperature and humidity parameters on the chamber's control panel.

6. Start the Test Chamber: After setting test parameters, start the test chamber and enable over-temperature protection.

7. Fault Handling: In case of any alarms during testing, refer to the "Installation and Maintenance Manual" for troubleshooting procedures.

Common Dehumidification Methods in High and Low Temperature Test Chambers

1. Refrigeration Dehumidification Method: This method condenses water vapor in air onto a cold surface, forming water or frost which is then removed from the chamber. However, prolonged testing may cause frost buildup affecting dehumidification efficiency; thus controlling cold surface temperatures above 0℃ is crucial.

2. Solid Desiccant Dehumidification Method: This method absorbs water vapor from air using solid desiccants to achieve dehumidification—ideal for tests requiring lower dew point temperatures around -70℃. Although effective in achieving lower humidity levels due to lower surface water vapor pressure of desiccants, it can be inconvenient requiring specialized equipment.

In special test scenarios like testing internal combustion engines at low temperatures or during operation requiring large air supply for fuel combustion—solid desiccant-based rotary dehumidifiers operating continuously are typically used to prevent excessive frost buildup on evaporators due to new air’s water vapor.

 

 
 
Home  |  Products  |  News  |  About us  |  Feedback  |  Contact us  |  
Copyright © 2008-2015 Hong Kong Bonad Technology Limited | Shenzhen Bonad Instrument Co., LTD. All Rights Reserved.
 
    Add:C505, Hongdu Building,Bao\\\'an45 district,Shenzhen,518101,Guangdong Province,China    Tel:+86-13380391156    Fax:0755-23721200    Email:Alice@szbonad.com
 
主站蜘蛛池模板: 国产精品嫩草影院久久| 亚洲成年看片在线观看| 久久综合久久自在自线精品自| 少妇与黑人一二三区无码| 99久久精品无码一区二区毛片| 白丝爆浆18禁一区二区三区| 久久国产欧美日韩精品| 成人亚洲精品久久久久软件| 亚洲伊人久久精品酒店| 一本大道在线观看无码一区 | 日本久久精品一区二区三区| 丁香五月亚洲综合深深爱| 国产精品综合色区在线观看| 依依成人精品视频在线观看| 日韩亚洲欧美在线com| 亚洲色最新高清av网站| 国产日韩精品中文字无码| 3d动漫精品一区二区三区| 国产av永久精品无码| 亚洲精品一区二区久久| av在线播放无码线| 国产熟女亚洲精品麻豆| 国产偷窥盗摄一区二区| 欧美人与性动交g欧美精器| 中文字幕一区二区三区精彩视频| 久久精品99无色码中文字幕| 综合欧美日韩国产成人| 51福利国产在线观看午夜天堂| 国产欧色美视频综合二区| 亚洲老熟女av一区二区在线播放| 国产熟妇久久777777| 亚洲国产精品久久精品| 欧美性色黄大片手机版| 成人三级无码视频在线观看| 少妇乱人伦无码视频| 色欲久久久天天天综合网精品| 无码伊人久久大杳蕉中文无码| 国产强奷伦奷片| 国产精品综合av一区二区| 人妻aⅴ中文字幕| www.男人的天堂|